
High-electric-field quantum transport theory for semiconductor superlattices

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2000 J. Phys. A: Math. Gen. 33 233

(http://iopscience.iop.org/0305-4470/33/2/301)

Download details:

IP Address: 171.66.16.118

The article was downloaded on 02/06/2010 at 08:08

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/33/2
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen.33 (2000) 233–246. Printed in the UK PII: S0305-4470(00)07718-0

High-electric-field quantum transport theory for
semiconductor superlattices

V V Bryksin† and P Kleinert‡
† Physico-Technical Institute, Politekhnicheskaya 26, 194021 St Petersburg, Russia
‡ Paul-Drude-Institut f̈ur Festk̈orperelektronik, Hausvogteiplatz 5–7, 10117 Berlin, Germany

E-mail: kl@pdi-berlin.de

Received 13 September 1999

Abstract. Nonlinear quantum transport in semiconductor superlattices (SLs) is studied based
on the Kadanoff–Baym–Keldysh non-equilibrium Green function technique. Emphasis is placed
on quantum box SLs with a discrete energy spectrum. Special results are obtained for the high-
field transport of a one-dimensional SL model. Both intra-collisional field effects and lifetime
broadening are treated self-consistently on an equal footing. For narrow miniband SLs exact
results are derived for the field and temperature dependence of the current density, which even
differ qualitatively from those obtained by making use of the generalized Kadanoff–Baym ansatz.
The rigorous quantum mechanical treatment reveals the hopping character of the transport in narrow
miniband SLs. This is compared with results derived from the density-matrix approach.

1. Introduction

We will consider superlattice (SL) transport along the symmetry axis under the conditions
of sufficiently low carrier concentration suppressing the field-domain formation, and a wide
minigap to prevent Zener tunnelling in the electric field region of interest. The formation of
electric field domains results in a number of interesting effects (see, e.g., [1]). In this paper,
however, we assume that the field distribution is homogeneous. When the Bloch frequency
of the SL� = eEd/h̄ (E is the electric field andd the SL period) exceeds some effective
scattering rate 1/τ , the miniband of carrier states splits into a Wannier–Stark (WS) ladder,
the energetic separation between the rungs of which is inversely proportional to the field
strength. Electron transport results from phonon-induced hopping between localized oscillator-
like states. Negative differential conductance is predicted to occur [2] with a characteristic 1/E

dependence of the current due to Houston oscillations [3] of electrons confined to a region
of the order of1/eE (1 is the miniband width). When an integer multiple of the Bloch
frequency� equals the frequency of polar-optical phononsω0, electrophonon resonances are
expected to appear [3, 4] giving rise to a non-monotonic current–voltage dependence. Such
resonant-type current anomalies around the electro-phonon resonances were observed in thin
ZnS films many years ago [5,6]. As the anisotropic band structure of a SL can easily be tuned
over a wide parameter range, it seemed to be promising to investigate this interesting quantum
interference phenomenon also in artificial SL systems. Recently, electrophonon resonances
in SLs were theoretically studied [7, 8]. Their temperature dependence has been found to be
much stronger than in narrow-band semiconducting films. Unfortunately, to our knowledge,
in SL transport electro-phonon resonances have not been observed in experiment until now.
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This could be due to strong elastic and inelastic scattering present in the studied SLs, which
may mask the predicted current anomalies.

Electro-phonon resonances are strongly enhanced by a quantizing magnetic field, which is
applied parallel to the electric field and perpendicular to the SL layers [10,11]. This pronounced
enhancement of current resonances is due to the dimensionality reduction by the magnetic field,
which leads essentially to one-dimensional (1D) transport within a quantum box superlattice
(QBSL). The magnetic field gives rise to additional cyclotron-Stark resonances, which have
been studied both theoretically [9–11] and experimentally [12,13].

From a theoretical point of view the application of a quantizing magnetic field
perpendicular to the SL layers poses some fundamental problems. Landau quantization of the
in-plane motion and the WS localization of carriers moving along the field direction result in a
completely discrete energy spectrum. As a consequence, the carrier transport becomes singular
with δ-like peaks, when the scattering is treated only in lowest-order perturbation theory,
which does not introduce any collisional broadening. To obtain meaningful physical results
a phenomenological damping parameter has been used in recent theoretical studies [9–11].
From a microscopic quantum kinetic point of view this procedure is completely inadequate,
when treating systems with discrete energy states. In this case, the finite lifetime of states
is expected to depend non-analytically on the coupling constant of the respective scattering
mechanism, which requires to sum up an appropriate infinite set of scattering diagrams.
A non-equilibrium theory of the SL transport that accounts for finite-lifetime effects has
been proposed recently [14–16] using the Kadanoff–Baym–Keldysh non-equilibrium Green
function technique. In an earlier paper [16] we used the generalized Kadanoff–Baym (KB)
ansatz [17, 18]. Even this sophisticated approach seems to be inadequate when considering
quantum transport in systems, in which all eigenstates are completely discrete if scattering is
absent. Under this circumstance the interaction can no longer be described by an instantaneous
scattering process as the generalized KB ansatz suggests, because the neglect of the scattering
duration is not in line with the non-perturbative character of the problem. When lifetime effects
become essential, the electron distribution function depends explicitly on a time variable even
for stationary carrier transport [16]. Otherwise, the distribution function does not solve the
kinetic equation. This explicit time dependence, which is neglected when using the generalized
KB ansatz, affects the energy-conserving delta function of the Fermi golden rule in the energy
domain in a similar way as the lifetime broadening. When treating the QBSL transport, we
are faced with the interesting quantum kinetic problem to take into account simultaneously
both intra-collisional field effects, which give rise to WS localization, and a sizable lifetime
broadening, which cannot be treated consistently within the framework of the generalized KB
ansatz. The consideration of this general quantum kinetic task could, likewise, be useful for
transport studies in other periodic arrays of nanostructures.

On the basis of the non-equilibrium Green function approach, we will calculate the current
density for the Esaki–Tsu model in the high-field region, where the inequality�τ > 1 is
satisfied. Both intra-collisional field effects and collisional broadening are consistently taken
into account within this quantum kinetic approach, which does not rely on the generalized KB
ansatz, but solves the kinetic equation exactly.

2. Basic theory

We focus on electron transport in the lowest narrow miniband of a SL at low carrier
concentration, when the electron gas is considered to be non-degenerate. The starting point of
the non-equilibrium Green function approach is the Dyson equation for the double-time Green
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functionsG≷, which we prefer to present in the wavenumber representation [16][
ih̄
∂

∂t
− ε(k) + ieE∇k

]
G≷(kt |k′t ′)

= ± h̄
∫

dk1

{∫ t

t ′
dt16

≷(kt |k1t1)G
≷(k1t1|k′t ′)

+
∫ t ′

−∞
dt16

≷(kt |k1t1)G
≶(k1t1|k′t ′)

−
∫ t

−∞
dt16

≶(kt |k1t1)G
≷(k1t1|k′t ′)

}
. (1)

The SL energy dispersion relationε(k) describes carrier propagation along the SL-axis by a
tight-binding model and allows free electron motion with an effective massm∗ in all lateral
directions:

ε(k) = h̄2k2
⊥

2m∗
+
1

2
(1− cos(kzd)) (2)

where1 is the miniband width and ¯hk⊥ the transverse quasi-momentum. The self-energy
components6≷ will be calculated within the self-consistent Born approximation.

Crucial for possible simplifications of the Dyson equation are the symmetry properties
of the Green functions. For the stationary carrier transport and in the scalar-potential gauge,
the Green functions depend on two wavenumber vectors, but only on the time difference. In
addition, there is a spatial symmetry property of the problem, which accounts for the fact that a
carrier moving the distancer under the influence of the fieldE restores its quasi-momentum,
when the energy is shifted byeEr. These symmetry properties of the Green functions are
expressed by [16]

G≷(kt |k′t ′) = G≷(k, t ′ − t)δ
(
k′ − k − eE

h̄
(t ′ − t)

)
. (3)

In the absence of any electric field, equation (3) reconstitutes the symmetry of a homogeneous
electron system. As the relationship (3) also applies to the self-energy components6≷,
the Dyson equation (1) simplifies considerably. Another symmetry of the Green functions
relates the upper and lower time branches to each other. This symmetry becomes particularly
transparent for the Green functions defined by

G̃≷(k, t) ≡ G≷
(
k − eE

2h̄
t, t

)
(4)

for which we get, according to equation (3) and the antisymmetry ofG≷ [16],

G̃≷(k, t)∗ = −G̃≷(k,−t). (5)

The left-hand side of equation (1) simplifies by introducing new functions

G̃≷(k, t) = ∓ig≷(k, t)exp

[
i

h̄

∫ t/2

−t/2
dτε

(
k +

eE

h̄
τ

)]
(6)

which satisfy, according to equation (5), the symmetry relation

g≷(k, t) = g≷(k,−t)∗. (7)

The self-energy, entering the Dyson equation (1), is calculated in the self-consistent Born
approximation

6̃
≷
ph(k, t) =

∑
qλ

D
≷
qλ(t)G̃

≷(k + q, t) (8)
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where scattering on polar-optical phonons is described by

D
≷
qλ(t) =

2π

h̄2

|Mqλ|2
sinh(h̄ωqλ/2kBT )

cosωqλ

(
t ∓ ih̄

2kBT

)
. (9)

Mqλ is the electron–phonon coupling constant for phonons of wavevectorq in branchλ, and
ωqλ is the phonon frequency.T denotes the temperature. In this paper, we will not consider
the details of the electron–phonon interaction in a SL, but will restrict ourselves to the simple
bulk-phonon model. For elastic scattering on isolated impurities, the phonon Green function
D
≷
qλ(t) in equation (9) is replaced by a constant coupling parameterU measuring the scattering

strength. Equation (8) for the self-energy closes the set of basic self-consistent equations, which
allow a quantum kinetic treatment of the nonlinear SL transport. In the next section, we will
derive an equation for̃G>, the solution of which enables the calculation of the field-dependent
density of states (DOS).

3. Density of states

In this section, we consider the Keldysh Green functionG̃>. On the right-hand side of the
Dyson equation (1), we retain only the term6>G>, which is admissible for a non-degenerate
electron gas, whereG< introduces only small corrections, which can be neglected. Inserting
equations (3) and (4) into the Dyson equation (1), we obtain[
−ih̄

∂

∂t
+ ε

(
k − eE

2h̄
t

)
+

i

2
eE∇k

]
G̃>(k, t)

= − h̄
∫ t

0
dt16̃

>

(
k − eE

2h̄
(t − t1), t1

)
G̃>

(
k +

eE

2h̄
t1, t − t1

)
(10)

where the timet is an abbreviation for the time differencet ′ − t resulting from equation (1).
To proceed further, the expression for the self-energy (8) together with equation (6) is inserted
into the Dyson equation. We obtain the integro-differential equation for the Green function

− ∂
∂t
g̃>(k, t) =

∑
qλ

∫ t

0
dt1D

>
qλ(t1)g̃

>

(
k + q − eE

h̄
(t − t1), t1

)
g̃>(k, t − t1)

× exp

{
i

h̄

∫ t1

0
dτ

[
ε

(
k + q − eE

h̄
(t − τ)

)
− ε

(
k − eE

h̄
(t − τ)

)]}
(11)

with

g̃≷(k, t) = g≷
(
k − eE

2h̄
t, t

)
. (12)

An analytic solution of this equation is derived for weak scattering and high electric fields,
for which negative differential conductivity may occur and the inequality�τ � 1 is valid.
In this case, we will exploit a fundamental symmetry property of the problem, namely the
invariance under the translation by a reciprocal lattice vector, valid even in the presence of a
homogeneous electric field of any strength [3]. This symmetry is accounted for by a discrete
Fourier transformation of the Green functions

g̃≷(k, t) =
∞∑

l=−∞
eilkzd g̃

≷
l (k⊥, t). (13)

In the limit of high electric fields (�τ � 1), the lowest-order Fourier coefficient̃g≷0 (k⊥, t)
dominates the sum in equation (13), meaning that only this contribution can be retained on the
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right-hand side of the Dyson equation (11). Furthermore, we will treat a 1D transport model
(in fact, the Esaki–Tsu model [2]) without any lateral degrees of freedom. It is expected that
the essence of our results will not be strongly modified, when a more realistic SL model is
studied, in which the confinement of the lateral electron motion is due to a strong magnetic
field. With the restriction to the lowest-order Fourier coefficient, we obtain for the 1D transport
model from equation (11):

d

dt
g>0 (t) = −

∫ t

0
dt1D

>(t1)g
>
0 (t1)g

>
0 (t − t1)J 2

0

(
1

h̄�
sin

�t1

2

)
(14)

where in the derivation of this equation we used∣∣∣∣∑
kz

exp

{
i

h̄

∫ t1

0
dτε

(
kz +

eE

h̄
τ

)}∣∣∣∣2 = J 2
0

(
1

h̄�
sin

�t1

2

)
(15)

andg̃>0 (t1) = g>0 (t1). After a Laplace transformation of equation (14), we obtain the formal
solution

g>0 (s) =
1

s +H(s)
(16)

whereH(s) itself depends ong>0 (t)

H(s) =
∫ ∞

0
dte−stD>(t)g>0 (t)J

2
0

(
1

h̄�
sin

�t

2

)
. (17)

The integral equation (16) can be solved by iteration, while in each step the inverse Laplace
transform ofg>0 (s) has to be calculated. We assume that the lifetime broadening is mainly
governed by elastic impurity scattering. In this case, taking into account the Fourier
representation

J 2
0

(
1

h̄�
sin

�t

2

)
=

∞∑
l=−∞

Fl

(
1

h̄�

)
e−il�t (18)

with

Fl

(
1

h̄�

)
= 1

π

∫ π

0
dxJ 2

l

(
1

h̄�
sinx

)
(19)

a difference equation for the Keldysh Green function is obtained[
s +U

∑
l

Fl

(
1

h̄�

)
g>0 (s + il�)

]
g>0 (s) = 1 (20)

which has to be solved under the constrictiong>0 (t = 0) = 1. In the limit of narrow minibands
(1→ 0), only the term withl = 0 survives in the sum of equation (20), and we find the exact
solution

g>0 (s) =
√
s2 + 4U − s

2U
(21)

which has a universal character, because it does not depend on the electric field. After an
inverse Laplace transformation, we obtain

g>0 (t) =
1√
Ut
J1(2
√
Ut) (22)

which oscillates in time and exhibits a power-law decay. This has to be contrasted with the pole
approximation of equation (16) leading to an exponential dependenceg>0 (t) = exp(−H(s =
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0)|t |), which allows the definition of a relaxation time according toτ = 1/H(s = 0). From
g>0 (s) the DOS is obtained by an analytical continuation

g>0 (ω) =
1

π
Reg>0 (s)|s=iω. (23)

Inserting into this equation the exact solution (21), we get

g>0 (ω) =
1

2πU
Re
√

4U − ω2. (24)

It is astonishing that this result completely agrees with the well known DOS calculated within
the self-consistent Born approximation for electrons in an impurity band under the condition of
low or zero electric fields. In our approach, we focus on the non-equilibrium situation caused
by high electric fields (�τ � 1) and find in the ultra-quantum limit (1/h̄�� 1) a universal
field-independent expression for the DOS, which surprisingly reproduces the DOS obtained
atE = 0. This coincidence is due to the disappearance of the electric field in the sequential
tunnelling regime (1/h̄�� 1).

The non-analytic dependence of the DOS in equation (24) on the coupling constantU is
characteristic for the scattering-induced decay of discrete eigenstates and cannot be reproduced
by a simple perturbation approach. Essential is the appearance of band edges, which prevent
run-away effects due to the strong electric field. The situation is completely different in the pole
approximation, where the exponential decay ofg>0 (t) leads to a Lorentzian DOS, which falls
off only gradually and is, therefore, plagued by run-away effects. Any approximate treatment
of scattering has to focus on the asymptotic regime of larges (or smallt) in order to reproduce
the expected band edges in the DOS.

For a finite miniband width1, equation (20) allows the calculation of the field-dependent
DOS. The result is a slightly modified central peak aroundω = 0. In addition, for largeω
(or small timet) sidebands appear atω = l�, the width of which is of the order of

√
U . The

height of these sidebands decreases with increasingl as(1/h̄�)2l . The numerical analysis of
equation (20) showed that under the condition�τ � 1 the sidebands are so weak that they
can always be neglected.

4. Distribution function

The kinetic equation for the Keldysh Green functionG< is derived from equation (1), where for
a non-degenerate electron gas the contribution6<G< on the right-hand side of this equation
is only of secondary importance and will be neglected. Equations (3), (4), (6) and (8) are
inserted into the Dyson equation (1). Simple substitutions of time integrals lead to the result
presented in the appendix. Once more, we exploit the Fourier transformation (13) with respect
to thekz dependence and retain in the limit�τ � 1, only thel = 0 Fourier coefficient. As a
consequence, the left-hand side in equation (A1) vanishes and the kinetic equation can be cast
into the form∑
q⊥λ

∫ ∞
−∞

dt1[F<λ (q⊥,k⊥, t1)g
<
0 (k⊥ + q⊥, t1)g>0 (k⊥, t − t1)

−F>λ (q⊥,k⊥, t1)g>0 (k⊥ + q⊥, t1)g<0 (k⊥, t − t1)] = 0 (25)

where the following kernels have been introduced:

F
≷
λ (q⊥,k⊥, t1) =

∑
kzqz

D
≷
qλ(t1)

× exp

{
i

h̄

∫ t1

0
dτ

[
ε

(
k + q +

eE

h̄
τ

)
− ε

(
k +

eE

h̄
τ

)]}
. (26)
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At this stage a lateral electron distribution functionf (k⊥, t) can be defined by

g<0 (k⊥, t) = g>0 (k⊥, t)f (k⊥, t). (27)

Unlike the KB ansatz, equation (27) is not associated with any approximation. This equation
is nothing but the definition of a time-dependent distribution functionf (k⊥, t), which is
determined by a kinetic equation obtained from the integral equation (25). In general, even for
stationary transport problems the explicit time dependence inf (k⊥, t) must be preserved, as
it accounts for a characteristic interaction time, which gives rise to non-perturbative scattering
corrections similar to the lifetime broadening. When this time dependence is neglected, as it is
proposed by the generalized KB ansatz, the Dyson equations forg>0 andg<0 can be solved only
approximately in the limit of vanishing scattering. As scattering-induced lifetime broadening
is crucial for systems, whose unperturbed eigenstates are discrete, the validity of such an
approximation has to be strongly questioned.

For the 1D Esaki–Tsu model, we obtain the following homogeneous integral equation for
f (t): ∫ ∞

−∞
dt1g

>
0 (t1)g

>
0 (t − t1)[F<(t1)f (t1)− F>(t1)f (t − t1)] = 0 (28)

which has to be solved under the conditionf (0) = 1. In deriving equation (28), we neglected
the dispersion of optical phonons and replaced the screened electron–phonon coupling matrix
element by a constantω2

00. The functionsF≷(t) are given by

F≷(t) = 2π

h̄2

ω2
00

sinh(h̄ω0/2kBT )
J 2

0

(
1

h̄�
sin

�t

2

)
cosω0

(
t ∓ ih̄

2kBT

)
. (29)

For elastic scattering, we haveF>(t) = F<(t), and equation (28) is solved byf (t) = 1,
which is in accordance with the generalized KB ansatz. However, as we will show in the
next section, without any inelastic scattering the current vanishes. When inelastic scattering is
taken into account, equation (28) no longer admits the trivial solutionf (t) = 1. To calculate
the distribution function in the presence of inelastic scattering, we switch to Fourier space and
obtain, from equation (28), for the 1D model∫ ∞

−∞
dω′[F<(ω′)g>0 (ω)g

<
0 (ω − ω′)− F>(ω′)g<0 (ω)g>0 (ω − ω′)] = 0. (30)

In order to solve this equation, a distribution functionf (ω) in Fourier space is introduced by

g<0 (ω) = g>0 (ω)f (ω). (31)

The generalized KB ansatz would requiref (ω) = 1. Here we proceed without using
this approximation. With equation (31) the integral equation (30) is expressed in terms
of the distribution functionf (ω) without any loss of generality. CalculatingF≷(ω) from
equations (29) and (18), from equation (30) we obtain
∞∑

l=−∞
Fl

(
1

h̄�

)
{g>0 (ω + ω0 − l�)[f (ω + ω0 − l�)− exp(h̄ω0/kBT )f (ω)]

+g>0 (ω − ω0 − l�)[f (ω − ω0 − l�) exp(h̄ω0/kBT )− f (ω)]} = 0 (32)

which has to be solved under the condition∫
dω

2π
g>0 (ω)f (ω) = 1. (33)

The difference equation (32) for the distribution functionf (ω) agrees with the kinetic equation
for the lateral distribution function of a 3D SL derived some years ago (cf equation (18) in [7]).
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This analogy is nearly perfect as in our earlier density-matrix approach the quantityg>0 is
replaced by a theta function, which is nothing but the DOS of the lateral, 2D carrier motion.
The agreement of both kinetic equations seems to be accidental in spite of the dissimilarity
of the involved distributions. In our former approach, the lateral distribution functionn(k⊥)
counted the field-dependent carrier population along directions perpendicular to the electric
field, whereasf (ω) has a dynamical origin and is associated with the finite scattering duration.
This frequency dependence of the distribution function has no counterpart in the density-matrix
approach.

In the limit of vanishing miniband width (1 → 0), equation (32) has an exact, field-
independent solution

f (ω) = 2h̄
√
U/kBT

I1(2h̄
√
U/kBT )

exp

(
h̄ω

kBT

)
(34)

where the normalization condition (33) has already been accounted for. It relates the
distribution function to the parameters characterizing the main scattering events responsible
for the lifetime broadening (in our case the coupling constantU of the impurity scattering).
In equation (34),I1 is the modified Bessel function. When a finite miniband width has to be
considered, equation (32) can be solved as in our previous work [7], either numerically or
analytically, by means of some asymptotic approximations.

From the distribution functionf (ω) and equation (31), the time-dependent Keldysh Green
functiong<0 (t) is obtained by an inverse Fourier transformation

g<0 (t) =
1

1− itkBT /h̄

I1((1− itkBT /h̄)2h̄
√
U/kBT )

I1(2h̄
√
U/kBT )

(35)

whereg<0 (t) is complex and oscillates in time. Under the condition 2¯h
√
U/kBT � 1, the

difference betweeng<0 (t) andg>0 (t) becomes vanishingly small. The exact result (35) has to
be compared with the solution of the problem derived within the pole approximation and by
exploiting the generalized KB ansatz. As mentioned earlier, in this case we havef (t) = 1 or
g<0 (t) = g>0 (t). From equation (16), we getg>0 (t) = exp(−H(s = 0)|t |), which is inserted
into equation (17). For narrow minibands (1 → 0) and dominant impurity scattering, we
obtain for the scattering rateH(s = 0) = √U . The resultg<0 (t) = g>0 (t) = exp(−√U |t |)
has the typical form of a damping term that has often been used in transport studies. Its
time dependence deviates even qualitatively from the exact solutions (22) and (35), which do
not allow the definition of any relaxtion time. This underlines the importance of quantum
corrections calculated beyond the generalized KB ansatz for the considered system, in which
the energy spectrum is discrete, when scattering is absent.

5. Current density

The current density along the SL-axis is calculated from the stationary electron distribution
function according to

jz = −en
∑
k

ε(k)
∂g<(k, t = 0)

∂kz
(36)

wheren is the electron density. This equation has been derived by integration by parts and
relates the current to the collision integral, when the quantity∂g<(k, t = 0)/∂kz is replaced
by the right-hand side of the kinetic equation (A1). Under the condition�τ � 1, we will
keep only thel = 0 Fourier coefficient in the collision integral. For the 1D model, it follows
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from equation (A1) that

eE
∂

∂kz
g<(kz, t = 0) = h̄

∑
qzλ

∫ ∞
0

dt1[R(kz, qz, t1)− R(kz, qz,−t1)]

×[D<
qzλ
(t1)g

<
0 (t1)g

>
0 (−t1)−D>

qzλ
(t1)g

>
0 (t1)g

<
0 (−t1)] (37)

with

R(kz, qz, t1) = exp

{
i

h̄

∫ t1

0
dτ

[
ε

(
kz + qz +

eE

h̄
τ

)
− ε

(
kz +

eE

h̄
τ

)]}
. (38)

If there was only elastic scattering, the current would vanish, because in this caseD>
qzλ
(t1) =

D<
qzλ
(t1) and g>0 (t) = g<0 (t). Inelastic scattering gives rise to a non-vanishing current

contribution, which is mainly determined by the time dependence of the Keldysh Green
functionsg>0 (t) andg<0 (t).

To derive the final expression for the current density, theqz andkz integrals are calculated.
Considering equation (38) and the periodicity of thekz integral, we obtain the exact result∑

qzkz

ε(kz)[R(kz, qz, t)− R(kz, qz,−t)] =
∞∑

l=−∞
lh̄�Fl

(
1

h̄�

)
eil�t (39)

whereFl is given by equation (19). In our previous paper [7] these quasi-momentum integrals
were calculated within an approximation that only become exact in the limit of vanishing
lifetime broadening.

From equations (36)–(39), we obtain our final result for the current density valid in the
high-field region, when�τ � 1

jz = 4πenω2
00d

sinh(h̄ω0/2kBT )

∞∑
l=−∞

lFl

(
1

h̄�

)
Re

∫ ∞
0

dteil�t cos

(
ω0t + i

h̄ω0

2kBT

)
g>0 (t)g

<
0 (t).

(40)

Another instructive form for the current density is derived from equation (40) by switching to
the Fourier space and using (31)

jz

j0
=

∞∑
l=−∞

lFl

(
1

h̄�

)∫ ∞
−∞

dω

2π
g>0 (ω)g

>
0 (ω + ω0 + l�)[(N0 + 1)f (ω)−N0f (ω + ω0 + l�)]

(41)

wherej0 = 4πenω00d is a field-independent reference current density andN0 is the Bose–
Einstein distribution function of optical phonons. This representation allows a clear physical
interpretation within the hopping transport picture with the hopping lengthld, the hopping
probability Fl(1/h̄�) and the field-dependent combined DOS. The term(N0 + 1)f (ω)
describes the dominating hopping along the field direction due to phonon emission, whereas
phonon absorption [N0f (ω +ω0 + l�)] leads to a negative current contribution. The phonon-
induced transport is governed by a thermal distribution functionf (ω) given by equation (34).
This refers to a transport regime, where the thermalization time is much shorter than a
characteristic hopping time. In general, these two timescales determine the frequency
dependence of the distribution function. For an arbitrary ratio of these two times, equation (32)
allows the calculation off (ω). When the characteristic hopping time is not sufficiently large
(i.e., when1 is not extremely small), the thermodynamic equilibrium distribution (34) is not
a solution of the kinetic equation. In this case, the hopping transport becomes non-Markovian
because the transition probability at a given time depends on former hops.

The representation (41) of the current density allows a clear discrimination between the
hopping and band transport regime. At high electric fields, when� >

√
U , the carrier
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transport proceeds by phonon-induced tunnelling transitions. Without any inelastic scattering,
the carriers move back and forth, which does not result in any net current. In contrast, at low
fields, when� <

√
U , even elastic scattering leads to a delocalization of WS states and to

the occurrence of a finite current. At these low-field strengths the hopping transport picture
is not adequate and our approximation, to keep only the lowestl = 0 Fourier component in
equation (13) is no longer valid.

It is interesting to compare equation (40) with an expression for the current obtained within
the pole approximation and on the basis of the generalized KB ansatz. In this approximation,
which corresponds to our former approach [7, 16], we haveg<0 (t) = g>0 (t) = exp(−√U |t |)
and obtain from equation (40) the temperature-independent result

jz

j0
=

∞∑
l=−∞

lF

(
1

h̄�

)
2ω0

√
U

4U + (l�− ω0)2
. (42)

Figure 1 shows the relative current densityjz/j0 calculated from (40) (solid curves) and (42)
(dashed curves), respectively. The miniband width for the upper curves is two times larger
than for the lower ones. Pronounced electro-phonon resonances appear at field strengths
E = h̄ω0/led denoted by thin vertical lines. Despite the simultaneous appearance of
these interesting quantum transport resonances, which are rapidly smoothed out by collision
broadening, the results calculated from (40) and (42) even differ qualitatively. The rigorous
quantum kinetic approach leads to pronounced gaps, where the current exactly vanishes, unless
scattering on acoustic phonons or the dispersion of optical phonons is considered. These
windows of inhibited transport are due to the hopping character of carrier motion. In a real SL,
Coulomb interaction and scattering on acoustic phonons smear out these gaps and one expects
current minima instead. These minima have a complete other origin than the antiresonances
studied by Lyanda–Geller and Leburton [19–21]. They showed that acoustic phonons with
the wavelengthnd (with n being an integer number) do not cause intersite transitions because
the corresponding matrix element turns out to be zero. Consequently, the current vanishes
at certain single field strengths as long as lifetime broadening is neglected and the hopping
transitions are restricted to nearest neighbours. Antiresonances as predicted by Lyanda–Geller
and Leburton [19,20] have been studied experimentally in [22].

A second peculiarity exists in the current–voltage characteristic at field strengths below
10 kV cm−1, when the miniband width becomes lower than the energy of optical phonons.
The dashed curve calculated within the pole approximation and the KB ansatz still exhibits
a 1/E dependence as expected from a quasi-classical picture. In contrast, the exact quantum
kinetic current density (solid curve) approaches zero, as it is expected for phonon-induced
hopping under the condition1/h̄ω0 < 1, when the quasi-classical transport model is not
adequate. This expected crossover from quasi-classical to hopping transport with decreasing
1/h̄ω0 is only satisfactorily described by our complete quantum kinetic approach leading to
equation (40).

The temperature dependence of our exact solution (40) and the result (42), obtained
by using the KB ansatz, also differ significantly from each other. Quite similar to narrow-
band semiconductors [4], where the electron distribution function is constant, the current is
independent of temperature, when in the 1D model the approximationf (t) = 1 is used leading
to equation (42). The exact solution (40) behaves quite differently. Its temperature dependence
is similar to ones of a 3D SL, where the lateral distribution function plays an essential role [7].
The functionf (ω) introduces a strong dependence on temperature. For narrow minibands
(1/h̄ω0 � 1) and weak scattering (

√
U/ω0 � 1), hopping transport prevails, giving rise to

a phonon-induced increase of the current at low temperatures until it reaches saturation. The
behaviour becomes more complex and strongly field dependent, when the scattering-induced
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ω

ω

Figure 1. The field dependence of the relative current
densityjz/j0 for 1/h̄ω0 = 1 (upper curves) and 0.5
(lower curves). The solid and dashed curves have been
calculated from equations (40) and (42), respectively.
Other parameters are

√
U/ω0 = 0.05, h̄ω0/kBT = 5,

andd = 10 nm.

Figure 2. Temperature dependence of the relative current
densityjz/j0 for 1/h̄ω0 = 0.2 and

√
U/ω0 = 0.2. The

electric field strength is incremented by 5 kV cm−1 steps
between 30 and 60 kV cm−1 as indicated.

bandwidth is not much smaller than the energy of optical phonons. An example shows figure 2
for
√
U/ω0 = 0.2 and1/h̄ω0 = 0.2. The curves are calculated from equation (40) for

different electric field strengths. Interesting is the appearance of a crossover from an activated
hopping-like transport at 30 and 35 kV cm−1 to a more band-like transport regime, where the
current decreases with increasing temperature. The crossover appears at abouteEd = h̄ω0.
Above this field strength the carrier transport loses its resonant character and becomes similar
to band transport. Below the field strengthE = h̄ω0/ed, resonant phonon-induced transitions
between neighbouring WS levels drive the current and lead to a hopping-like temperature
characteristics. As in our previous approach [7], the current exhibits a non-analytic behaviour
atT = 0. In this limit, we obtain from equation (35)g<0 (t) = exp(−2i

√
Ut), and from (40)

jz

j0
= ω0√

U

∞∑
l=−∞

lFl

(
1

h̄�

)
2

(
1−

∣∣∣∣∣2
√
U − l� + ω0

2
√
U

∣∣∣∣∣
)√√√√1−

(
2
√
U − l� + ω0

2
√
U

)2

.

(43)

Data calculated from this equation are shown in figure 2 by asterisks. According to
equation (43), the current density calculated from equation (43) exhibits antisymmetric peaks
around renormalized resonance positions located at 2

√
U − l� + ω0 = 0.

The current–voltage characteristic calculated with the same set of parameters as in figure 2
is shown in figure 3. Again the solid and dashed curves are calculated from equations (40)
and (42), respectively. For the considered miniband width (1/h̄ω0 = 0.2) thel = 1 resonance
dominates, whereas all other resonances atleEd = h̄ω0 with l > 1 are strongly reduced by
the factorFl(1/h̄�). In contrast to the dashed curve calculated from equation (42), the exact
result (40) accounts for the fact that hopping transport becomes impossible both at low electric
fields and whenE becomes larger than(4

√
U + h̄ω0)/ed. The strong discrepancy between the

dashed and solid curves in figure 3 again stresses our conclusion that a quantum mechanical
treatment of transport in SLs with narrow minibands must go beyond the generalized KB
ansatz.
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ω ω

Figure 3. The field dependence of the relative current density
jz/j0 calculated from equations (40) (solid curve) and (42)
(dashed curve) for ¯hω0/kBT = 5, 1/h̄ω0 = 0.2, and√
U/ω0 = 0.2.

6. Summary

SL transport has been studied within a rigorous quantum kinetic approach on the basis of
the Kadanoff–Baym–Keldysh non-equilibrium Green function theory. We focused on SLs,
whose eigenstates are completely discrete when scattering is absent. Such QBSLs can be
realized by a quantizing magnetic field aligned parallel to the SL-axis or by a periodic array
of quantum dots. Starting from the Dyson equation and exploiting the symmetry properties of
the correlation functions, equations for the Keldysh Green functionsG≷ have been derived.
Exact analytical solutions have been found for 1D SLs with a narrow miniband width, subject
to a strong electric field (�τ > 1). These exact solutions differ even qualitatively from results,
which are compatible with the density-matrix approach, and which are obtained by making
use of the generalized KB ansatz and the pole approximation forG>. This exciting finding
stresses the importance of the double-time nature of correlation functions for the studied
system. It provides an interesting example, which demonstrates that an unsophisticated
usage of the density-matrix approach is not sufficient for describing the quantum transport
physics. We arrived at the conclusion that it is absolutely necessary to go beyond the
generalized KB ansatz within the double-time Green function approach when QBSL transport
is treated.

The DOS depends non-analytically on the coupling constant and exhibits band edges,
which prevent run-away effects. The scattering-induced energy band is slightly modified by
an electric field, which gives rise to additional weak sidebands.

Essential for the carrier statistics is the fact that the distribution function depends explicitly
on time even for the stationary transport. This time variable accounts for a finite duration of
the interaction, describing the scattering-induced decay of the electronic states. Its influence
on the distribution function is described by the non-equilibrium Green function approach
beyond the generalized KB ansatz. In this paper, we demonstrated that quantum effects, which
are traditionally not considered in the density-matrix approach, play an essential role in the
transport of QBSLs. With respect to the time dependence of the Keldysh Green functions, we
found that they do not fall off exponentially, as in former approaches, but oscillate accompanied
by a power-law decrease of the amplitude.

The field-dependent transport in SLs with narrow minibands exhibits hopping character.
Under the condition of small collisional broadening, real gaps are predicted to appear in the
current–voltage characteristics, unless scattering on acoustic phonons or the phonon dispersion
are taken into account. The appearance of these transport gaps are a manifestation of its hopping
nature. Starting with SLs, whose miniband width1 is larger than ¯hω0, there is a crossover
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from a region, where the current decreases with increasing field as 1/E, to hopping transport,
when1 becomes smaller than ¯hω0. Hopping is not possible, when the energy gain of carriers
in the electric field is not sufficient to permit phonon-induced transitions.

The hopping nature of the transport is also manifest by its temperature dependence, which
is mainly governed by the non-equilibrium distribution functionf (ω) calculated beyond the
generalized KB ansatz. In dependence on the miniband width, the scattering strength, and the
electric field, we found a complex temperature characteristics, which has no counterpart in
results derived from the density-matrix approach.

Finally, let us point out that there are also other periodic nanostructures, whose bare
energy spectrum is discrete. We can imagine that our approach is useful for studying quantum
transport in such structures, too.
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Appendix

In this appendix, a kinetic equation forg<(k, t) is derived from the Dyson equation (1). To
this end equations (3), (4), (6) and (8) are inserted into (1) to get an equation forg<. For
the considered non-degenerate electron gas it is sufficient to retain only terms on the right-
hand side of the resulting equation, which contain the productg<g>. Manipulations of the
τ -integrals allow a simplification of the exponents introduced by equation (6). We obtain

eE∇kg<(k, t)
= h̄

∑
qλ

{∫ ∞
0

dt1

[
P<(kq|t − t1, t)g<

(
k + q − eE

2h̄
t1, t − t1

)
×g>

(
k +

eE

2h̄
(t − t1), t1

)
−Q>(kq|t1, t)g>

(
k + q +

eE

2h̄
(t − t1), t1

)
×g<

(
k − eE

2h̄
t1, (t − t1)

)]
−
∫ 0

−∞
dt1

[
P>(kq|t1, t)g>

(
k + q − eE

2h̄
(t − t1), t1

)
g<
(
k +

eE

2h̄
t1, t − t1

)
−Q<(kq|t − t1, t)g<

(
k + q +

eE

2h̄
t1, t − t1

)
g>
(
k − eE

2h̄
(t − t1), t1

)]}
(A.1)

with

P≷(kq|t1, t) = D≷qλ(t1) exp

{
i

h̄

∫ t1

0
dτ

[
ε

(
k + q − eE

2h̄
t +

eE

h̄
τ

)
−ε
(
k − eE

2h̄
t +

eE

h̄
τ

)]}
(A.2)

and

Q≷(kq|t1, t) = D≷qλ(t1) exp

{
i

h̄

∫ t1

0
dτ

[
ε

(
k + q +

eE

2h̄
t − eE

h̄
τ

)
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−ε
(
k +

eE

2h̄
t − eE

h̄
τ

)]}
. (A.3)
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